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An approach developed recently to study the dynamics of vorticity defects in ho-
mogeneous shear flow extends naturally to the case of baroclinic, quasi-geostrophic
flow. It is shown that an inviscid geostrophic flow with uniform vertical shear may
be destabilized by introducing a ‘potential vorticity defect’, an arbitrarily small but
sufficiently sharp and horizontally uniform change in stratification or vertical shear.
The linear baroclinic problem is nearly identical to the linear homogeneous problem,
with differences arising only from the boundary conditions. The nonlinear baro-
clinic problem differs substantially from the nonlinear homogeneous problem, as the
leading-order baroclinic nonlinearity is the Jacobian of the ‘inner’ streamfunction and
potential vorticity in the horizontal plane aligned with the defect. An example of the
linear instability is described.

1. Baroclinic defect equations
Since the seminal work of Charney (1947) and Eady (1949), the quasi-geostrophic

theory of baroclinic instability has played a central role in geophysical fluid dynamics.
Here, it is noted that the approach used by Balmforth, del-Castillo-Negrete & Young
(1997) to study the dynamics of small disturbances to homogeneous two-dimensional
shear flows (Gill 1965) may be directly adapted to the study of quasi-geostrophic
baroclinic shear flows.

Consider the quasi-gestrophic flow of a continuously stratified fluid on an f-
plane, described by the dimensionless quasi-geostrophic potential vorticity equation
(Pedlosky 1987)

qt + J(Ψ, q) + J(ψ,Q) + J(ψ, q) = 0, (1.1)

where J(a, b) = axby − aybx is the Jacobian derivative with respect to the horizontal

coordinates x and y, and Ψ = −U(z)y and Q = −[S̃ (z)U ′(z)]′y are the basic-state
streamfunction and potential vorticity, respectively, representing a parallel flow with
variable stratification and vertical shear. The dimensionless stratification parameter,
S̃ (z) = f2L2/N2(z)D2, is a function of the vertical coordinate z, and a prime denotes
differentiation with respect to the argument. L and D are characteristic length and
depth scales, and N(z) is the dimensional buoyancy frequency. The total stream-
function and potential vorticity areΨ+ψ and Q+q, respectively, where the disturbance
streamfunction ψ(x, y, z, t) and potential vorticity q(x, y, z, t) = ∆ψ+ (S̃ψz)z may have
finite amplitude.

The flows of interest here have S̃ (z) and U ′(z) constant except in a small vertical
interval. That is, S̃ (z) = S0[1 + εFS (z/ε)], U ′(z) = Γ [1 + εFV (z/ε)], where the ‘defect’
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profile functions FS , FV ∼ 1 in the inner region |z| ∼ ε � 1 and FS , FV → 0 at least
quadratically as |z|/ε → ∞. As ε approaches zero, the stratification and vorticity
defects become vanishingly small, but the defect potential vorticity gradient Qy
remains of order one. In this limit, the rate of change with height of the isopycnal
slopes is fixed, not the total change of slope in the defect.

In the limit ε→ 0, a reduced set of equations describes the leading-order dynamics.
The derivation closely follows the procedure for the homogeneous problem (Balmforth
et al. 1997; Gill 1965), and is not repeated here. The reduced equations are

Zτ + ηZx − F ′Bx + J(B,Z) = 0, (1.2)

B̂(k, l, τ) = − 1
2
H(k, l)

∫ ∞
−∞
Ẑ(k, l, η, τ) dη, (1.3)

where F(η) = FS (η) + FV (η); B̂ and B are related by the Fourier transform

B̂(k, l, τ) =

∫ ∞
−∞

∫ ∞
−∞
B(x, y, τ) e−i(kx+ly) dx dy, (1.4)

and the function H depends on the boundary conditions as described below; hori-
zontally localized (or periodic) disturbances are assumed. Here τ = εΓ t and η = ε−1z,
and the inner-region streamfunction and potential vorticity have been expanded as
ψ ≈ εΓ [B(x, y, τ) + εφ(x, y, η, τ)] and q ≈ ΓS0Z , where Z = φηη and the approxima-
tions are the neglect of terms of higher order in ε. The evolution equation (1.2) is
a reduced form of (1.1), while (1.3) follows from matching inner (η ∼ 1) and outer
(|z| ∼ 1) solutions as η → ±∞ and z → 0±.

For a given H , (1.2)–(1.4) is a closed system for B and Z . The linear terms in (1.2)
are equivalent to those that arise in the homogeneous problem, but the nonlinear
terms differ: the Jacobian of B and Z is now in the (x, y)-plane, transverse to η, rather
than in the (x, η)-plane. The system (1.2)–(1.4) has the momentum (impulse) integral

d

dτ

∫ ∞
−∞

∫ ∞
−∞
yA dx dy = 0, (1.5)

and the energy integral

d

dτ

∫ ∞
−∞

∫ ∞
−∞

(
y

∫ ∞
−∞
ηZ dη + AB

)
dx dy = 0, (1.6)

where A is the inverse Fourier transform of Â = B̂/H . With the definition Y = Z−F ′y,
(1.2) may be rewritten Yτ + J (B − ηy, Y ) = 0, so the horizontal domain integral of
any function of Y is conserved separately for each η.

The outer dynamics reduce to ∆ψ+S0ψzz = 0. For decay on an unbounded domain
(ψ → 0 as |z| → ∞), the outer solutions are ψ̂± = εΓ B̂ exp (∓κz), where ψ = ψ+ in

z > 0, ψ = ψ− in z < 0, and κ = S
−1/2
0 (k2 + l2)1/2, so

H(k, l) = κ−1. (1.7)

If instead no-normal-flow conditions are imposed at z = ±d, the flow can support
Eady instabilities even if F = 0; if the inner time scaling is required to hold also at
the boundaries, these conditions reduce to ψ± = ±dψ±z at z = ±d, which removes the

Eady instability. Then the outer solutions are ψ̂± = εΓ B̂
[
cosh κz ∓ (κH)−1 sinh κz

]
,

and

H(k, l) = κ−1

(
sinh κd− κd cosh κd

cosh κd− κd sinh κd

)
. (1.8)
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The singularity in (1.8) at κs, where κsd = coth κsd, must be avoided in order that the
asymptotic ordering remain consistent. (A reviewer has suggested that the expansion
near κs might be handled by asymptotic techniques more like those used for marginally
stable modes.)

2. Linear disturbances
The linearized defect equations for small disturbances, (Z,B) = (ζ, b) with |(ζ, b)| �

1, may be obtained from (1.2)–(1.4) by dropping the Jacobian term in (1.2). These
differ in mathematical structure from the linear homogeneous shear defect equations
only through the form of H and by the retention of the dependence of the disturbance
on the transverse coordinate y. For constant N (FS = 0), this similarity reflects the
usual mathematical correspondence between the baroclinic and homogeneous shear
instability problems. Consequently, the analytical treatment of the homogeneous linear
normal mode and initial-value problems presented by Balmforth et al. (1997) may be
carried over with only slight modifications. The Fourier–Laplace transform analysis
of the linear initial-value problem leads to the same elements as in the homogeneous
problem: Landau damping, N-poles, and quasi-modes, in addition to the normal
modes. Only the normal modes grow indefinitely; the others contribute at most
transient growth. Some selected results on normal mode instabilities are summarized
here, and the reader is otherwise referred to Balmforth et al. (1997) and Gill (1965).

With (ζ, b) = (ζ̂0(η), b̂0) exp [ik(x− cτ) + ily], the dispersion relation is∫ ∞
−∞

F ′(η)

η − c dη = − 2

H(k, l)
. (2.1)

If F ′(ηn) = O at the points ηn, n = 1, 2, . . . ,M, then a Nyquist analysis reveals that
the total number of unstable normal modes cannot exceed (M + 1)/2, just as for
the homogeneous shear defects. Necessary and sufficient conditions for instability are
that at least one such point ηn exists at which also F ′′(ηn) 6= 0 and, for (1.7),∫ ∞

−∞
F(η)− F(ηn)

(η − ηn)2
dη < 0, (2.2)

while for (1.8), ∫ ∞
−∞

F(η)− F(ηn)

(η − ηn)2
dη 6= 0. (2.3)

The result (2.3) is formal, as the asymptotics break down near κs. For (1.7), an F-
profile with a single minimum will always be stable and a maximum is necessary for
instability, while marginality will be reached first at κ = 0. For (1.8), a single minimum
may evidently also be unstable, since the ‘asymptote’ M = −2/H traverses the entire
real axis, and instability will evidently always arise near κs; again, the results for (1.8)
must be interpreted with caution, because of the singularity of H at κs.

Results are shown below for the single-hump profile function F(η) = F0/(1+η2), for
which the integral (2.1) may be evaluated by residue theory. There is then instability
(growth rates ωi = kci > 0) when F0 > Fc = 2/(πH) if H > 0, and when F0 < Fc
if H < 0, but no regular neutral modes when F0 < Fc if H > 0 or when F0 > Fc if
H < 0.

For κd � 1, H ∼ κ−1 for both far-field boundary conditions, and the asymptotic
estimate of the short-wave cut-off for the single-hump profile is κc = πF0/2 in both
cases. The long-wave limit (κ→ 0) of H depends on the choice of far-field boundary
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Figure 1. Profiles of (a) zonal velocity (10−3 m s−1) and (b) buoyancy frequency N (c.p.h.) versus
height above the bottom z (5000 m) from the planetary geostrophic model at the centre of the
basin (dark solid line) and at a point directly south of the centre, halfway to the southern boundary
(dashed line). (c) Amplitude (positive abscissa) and phase divided by π (negative abscissa) for the
k = 40 mode of the basin-centre profile. Only the upper half of the domain is shown; below
mid-depth the variables are essentially uniform.

conditions. In this limit, the growth rates for the single-hump profile are bounded in
both cases, but ci diverges for the unbounded domain, while for (1.8), ci and ωi are
singular at κs.

3. An example
The present analysis was motivated by the appearance of a short-wavelength mode

in numerical calculations of the linear quasi-geostrophic instabilities of flow profiles
extracted from a planetary geostrophic ocean circulation model. This example is
summarized here. The reader is referred to Samelson & Vallis (1997) for a discussion
of the planetary geostrophic model.

Two planetary geostrophic flow profiles are shown in figure 1. The first profile was
located at the centre of the model basin, and the second directly south of the first
and halfway to the southern boundary, but for the present purpose they are taken
as independent parallel geostrophic shear flows. The first has a relative minimum in
buoyancy frequency N centred at z = 0.94 (300 m beneath the surface). The second
has N increasingly monotonically with z. In both, the geostrophic zonal velocity U
is westward for z > 0.8 (within 1000 m of the surface) and negligible for z < 0.8.
The linear quasi-geostrophic instabilities of these profiles were computed numerically
by fitting splines to the profiles N and U, linearizing and discretizing the quasi-
geostrophic equations (1.1) with ψ ∝ exp [ωit+i(kx−ωrt)] and linear no-normal-flow
boundary conditions at z = {0, 1}, and solving the resulting matrix eigenvalue problem
using standard software routines. The β-effect was included in these computations
(i.e. Q was replaced by Q+ βy).

The growth rates ωi of the fastest growing modes are shown versus zonal wavenum-
ber k in figure 2 for both profiles. For k < 10 (wavelengths λ > 30 km), the char-
acteristics of the growing modes are similar for the two profiles and qualitatively
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Figure 2. Growth rate ωi (0.63 yr−1) versus zonal wavenumber k (0.02 km−1) for the basin-centre
(dark solid line) and south (dashed line) profiles shown in figure 1, and for the defect mode for a
single-hump profile on an unbounded domain with S0 = 0.1, Γ = 50, ε = 0.01, F0 = 1686.

resemble the modes found for uniform shear by Charney (1947), Eady (1949) and
Green (1960) and for representative mid-ocean profiles by Gill, Green & Simmons
(1974). These modes extend throughout the water column, with structure roughly
similar to rest-state baroclinic modes, and largest amplitude near or at the surface.

For the first profile, but not the second, the band of instability extends to k ≈ 100
(λ ≈ 3 km). The growth rate is maximized near k = 40 (λ ≈ 8 km). These short-
wavelength modes are confined away from the boundaries, with maximum amplitude
and heat flux (proportional to the vertical rate of change of phase) near the buoyancy
frequency minimum at z = 0.94 (figure 1). In contrast to the Charney (1947), Eady
(1949) and Green (1960) modes, they arise from an interior reversal of the potential
vorticity gradient, which is dominated by the relative minimum in N embedded in
the roughly uniform shear near z = 0.94, similar to the term proportional to F ′S in
Qy above. This feature is absent from the second profile, which does not support the
short-wavelength instabilities.

For the first profile, the S-profile near the N-minimum may be accurately modelled
using the single-hump function, with S0 = 0.1 (N2 = 10), ε = 0.01, and F0 = 1686,
while Γ = 50 approximates the ambient shear. Since the asymptotics assumes F0 ≈
1 and S ≈ S0, this is well outside the expected range of validity of the defect
approximation. For these parameter values, the defect dispersion relation predicts
a maximum growth rate and short-wave cut-off that are an order of magnitude
too large, but nonetheless qualitatively resemble the numerical results in the short-
wavelength band (figure 2). The defect mode gives an accurate estimate of the thermal
potential vorticity structure of the short-wavelength mode near z = 0.94, despite the
breakdown of the defect asymptotics.

The relation between the defect modes (F0 ≈ 1) and the short-wavelength modes
(F0 � 1) is illustrated in figure 3 for the simpler case of uniform shear in an unbounded
domain, using the single-hump profile for the stratification defect. Numerical results
were obtained for S0 = 0.1, Γ = 50, ε = 0.02, and F0 = 1, 10, 100, 1000. For F0 = 1,
the defect prediction closely approximates the numerical results. As F0 increases,
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Figure 3. Scaled growth rate ωi/F0 versus scaled wavenumber k/F0 for the single-hump profile on
an unbounded domain with S0 = 0.1, ε = 0.02. Numerical results for F0 = 1, 10, 100, 1000 are shown
(dashed lines), for which the maximum scaled growth rates decrease with increasing F0. For F0 = 1,
the numerical results approach the scaled defect result (solid line), which is independent of F0.

the growth rates and wavenumbers decrease relative to the defect prediction. For
F0 = 1000, the relative difference in growth rates and wavenumbers is similar to that
between the defect and short-wavelength modes in figure 2, and the structure of the
short-wavelength modes near the growth rate maxima in figures 2 and 3 is similar.
This indicates that the short-wavelength instability of the planetary geostrophic flow
profile may be understood as the large-F0 continuation of a bifurcation to instability
that is induced by the relative minimum in N as described by the baroclinic defect
theory.

4. Discussion
The defect theory yields a linear baroclinic problem that is nearly identical to the

linear problem for homogeneous shear flow analysed by Balmforth et al. (1997), and
offers analogous, analytically accessible examples of baroclinic instabilities that do
not depend on the presence of a boundary.

In contrast, the nonlinear baroclinic problem differs substantially from the nonlinear
homogeneous problem, as it retains a three-dimensional structure. In the homogeneous
shear problem, all the gradients are in the horizontal plane, and one component of
the nonlinear term represents the self-advection of disturbance vorticity in a direction
transverse to the defect. In the present, baroclinic case, the potential vorticity gradients
are horizontal, but the defects arise from sharp vertical gradients, and the nonlinear
term represents instead the self-advection of disturbance potential vorticity within the
two-dimensional horizontal plane of the defect.

This distinction suggests that the nonlinear development of the baroclinic and
homogeneous instabilities will differ in character. In the homogeneous case, it may be
anticipated that the transverse advection of disturbance vorticity will lead to roll-up
of the defect for nonlinear disturbances. In the baroclinic case, a single linear normal
mode is an exact nonlinear solution that will grow indefinitely, since the corresponding
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nonlinear terms vanish identically, and for general initial conditions a more turbulent
evolution may be anticipated. The quantitative investigation of the nonlinear problem
is beyond the scope of the present contribution and is left to future work.
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